
Vulnerability of OSs

Yushi Omote
Japan Society for the Promotion of Science

Exit-Less Isolated Execution

Contact Info: [Omote] yushiomote@gmail.com, [Shinagawa] shina@ecc.u-tokyo.ac.jp, [Kato] kato@cs.tsukuba.ac.jp
Laboratory of Advanced Research B Room 1128, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.

Hypervisor-based Isolated Execution

Exit-Less Isolated Execution

OS-Transparent Exit-Less Context Switching

Takahiro Shinagawa
The University of Tokyo

Kazuhiko Kato
University of Tsukuba

  
  OS

App App

App

 Hypervisor

VM1
AddressSpace1 AddressSpace2

✗
Read 
Write

Exec. 
Path

Context 
Switcher 

Code

RWX  OS Pages

 App Pages

AddressSpace1
Page Permission

 Context Switcher Code 
 Pages 

  OnAppStart() { … } 
 OnAppEnd() { … } 
 OnSystemCall() { … } 
 OnInterrupts() { … }

R_X

___ RWX

R_X

___

AddressSpace2
Page Permission

  OS

App App App

Read 
Write

Exploit

Background

Existing Solution

Proposal

Implementation

Lightweight switching without VM exits. 
(≈ 300 cycles)

 
  OS

App App

 
App 

 Hypervisor

VM1 VM2

✗
Read 
Write

Exec. Path

Context 
Switcher 

Code

 OS/App-level Code transparently inserted by Hypervisor  
 switches address spaces without VM exits. 
 (Using VMFUNC instruction)

 Hypervisor isolates Apps in different address spaces. 
 (Using Nested Page Tables)

 Hypervisor isolates Apps in different VMs.

 Hypervisor switches VMs for OS/App context switching.

Costly CPU-mode changes, VM exits! 
(1500 cycles~)

 3 techniques for Hypervisors to transparently insert the code: 
    (1) User-level Trampoline                     (2) IDT Shadowing 
    (3) EPT-based GPT Switching

 Context Switcher Code is always read-only executable 
 while the rest has mutually-exclusive permissions.

 Context Switcher Code is executed on starting/ending Apps, 
 system calls or interrupts.

 OSs have many vulnerabilities and attack surfaces 
 but have unrestrained access to sensitive info. in Apps.

 Need protecting Apps from compromised OSs. 
 (while preserving compatibility for commodity OSs or OS transparency)

mailto:yushiomote@gmail.com?subject=
mailto:shina@ecc.u-tokyo.ac.jp?subject=
mailto:kato@cs.tsukuba.ac.jp

