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Lightweight switching without VM exits. 
(≈ 300 cycles)
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 OS/App-level Code transparently inserted by Hypervisor  
 switches address spaces without VM exits. 
 (Using VMFUNC instruction)

 Hypervisor isolates Apps in different address spaces. 
 (Using Nested Page Tables)

 Hypervisor isolates Apps in different VMs.

 Hypervisor switches VMs for OS/App context switching.

Costly CPU-mode changes, VM exits! 
(1500 cycles~)

 3 techniques for Hypervisors to transparently insert the code: 
    (1) User-level Trampoline                     (2) IDT Shadowing 
    (3) EPT-based GPT Switching

 Context Switcher Code is always read-only executable 
 while the rest has mutually-exclusive permissions.

 Context Switcher Code is executed on starting/ending Apps, 
 system calls or interrupts.

 OSs have many vulnerabilities and attack surfaces 
 but have unrestrained access to sensitive info. in Apps.

 Need protecting Apps from compromised OSs. 
 (while preserving compatibility for commodity OSs or OS transparency)
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