Towards agile and elastic bare-metal clouds

Yushi Omote[†], Takahiro Shinagawa[‡], Kazuhiko Kato[†] †University of Tsukuba, [‡]The University of Tokyo

Background & Problem

Bare-metal clouds emerging.

laaS offering unshared physical machines.

No virtualization overhead.
Suitable for HPC and Databases.

No live migration, checkpointing.

No elastic scale out (Slow OS deployment).

Current state-of-the-art

Approach 1 Re-designing OS

Disturbs user's self-customization of OSs.

Approach 2 Enhancing firmware

Needs tremendous hardware extension.

Approach 3 Reducing hypervisor overhead

Irreducible overhead (e.g. paging).

Approach 4 P2V & V2P

No continuous virtualization overhead ©

Causes downtime for P/V switching 😊

Goal

Agility & elasticity without OS modification, continuous overhead and downtime.

Approach

Temporarily-Virtualizable Hypervisor (TVH)

Temporarily virtualizes for agility & elasticity.

Exposes physical HW for seamless P/V switching.

For quick OS deployment...

For Live migration/checkpointing...

Evaluation Results

OS Deployment Test under DB workload

- Guest OS is booted in 48secs.
- 32GB OS image is deployed in 14mins.
- Bare-metal performance after deployment.

P/V Switching Test under DB workload

- No downtime for switching.

Future work

Capturing/restoring HW state.

Challenge is untraceable states but they can be trivial. (e.g. error counters)